TypeScript
GitHub repo
The repo for our SDK is here and includes a quickstart
section.
If you want to dive right in, we recommend cloning the repo and cracking on with the quickstart.
If you want to read more about it first, read on:
Install the TypeScript SDK
Initial Setup
To start using OneContext, set the following environment variables:
You can put them in an .env file in the root of your project and initialise them in your project like so:
import * as OneContext from "@onecontext/ts-sdk"
import * as dotenv from "dotenv";
import path from 'path';
import { fileURLToPath } from 'url';
import * as util from "util";
const __filename = fileURLToPath(import.meta.url);
const __dirname = path.dirname(__filename);
// Create a .env file and add your API_KEY
dotenv.config({path: __dirname + '/../.env'});
// make sure the env variables are being read correctly and instantiated as global variables
const API_KEY: string = process.env.API_KEY!;
const BASE_URL: string = process.env.BASE_URL!;
You can get an API key by signing up here
If you're on the serverless plan, your base URL will simply be https://api.onecontext.ai
. That's the default, so you can leave it blank if you like. If you're on the dedicated plan, this will be the URL of your private instance of OneContext.
Create your first knowledge base
A knowledge base is a collection of files. We create our first knowledge base and upload a file:
const knowledgeBaseCreateArgs: OneContext.KnowledgeBaseCreateType = OneContext.KnowledgeBaseCreateSchema.parse({
API_KEY: API_KEY,
knowledgeBaseName: knowledgeBaseName
})
OneContext.createKnowledgeBase(knowledgeBaseCreateArgs).then((res) => {console.log(res)})
Upload some content to this Knowledge Base
You can upload a file, or list of files
const uploadFilesArgs: OneContext.UploadFilesType = OneContext.UploadFilesSchema.parse({
API_KEY: API_KEY,
knowledgeBaseName: knowledgeBaseName,
file: "./quickstart/demo_data/instruct_gpt.pdf",
metadataJson: {"tag": "longForm"}
})
OneContext.uploadFiles(uploadFilesArgs).then((res) => {console.log(res)})
Or upload all the compatible files in a directory
const uploadDirectoryArgsLongForm: OneContext.UploadDirectoryType = OneContext.UploadDirectorySchema.parse({
API_KEY: API_KEY,
knowledgeBaseName: knowledgeBaseName,
directory: "./quickstart/demo_data/long_form/",
metadataJson: {"tag": "longForm"}
})
OneContext.uploadDirectory(uploadDirectoryArgsLongForm).then((res) => {console.log(res)})
Create a Vector Index
We want to chunk and embed the files in our knowledgebase but first we need somewhere to store our vectors. We create a vector index and specify the embedding model that the vector index should expect:
const vectorIndexCreateArgs: OneContext.VectorIndexCreateType = OneContext.VectorIndexCreateSchema.parse({
API_KEY: API_KEY,
vectorIndexName: vectorIndexName,
modelName: "BAAI/bge-base-en-v1.5"
})
OneContext.createVectorIndex(vectorIndexCreateArgs).then((res) => {console.log(res)})
By specifying the model we create a vector index of appropriate dimensions and also ensure that we never write embeddings from a different model to this index.
Create an Ingestion Pipeline
We are ready to deploy our first ingestion pipeline.
const indexPipelineCreateArgs: OneContext.PipelineCreateType = OneContext.PipelineCreateSchema.parse({
API_KEY: API_KEY,
pipelineName: indexPipelineName,
pipelineYaml: "./quickstart/example_yamls/index.yaml",
})
OneContext.createPipeline(indexPipelineCreateArgs).then((res) => {console.log(res)})
Where the file at index.yaml
reads like so:
steps:
- step: KnowledgeBaseFiles
name: input
step_args:
# specify the source knowledgebases to watch
knowledgebase_names: ["demoKnowledgeBase"]
inputs: []
- step: Preprocessor
name: preprocessor
step_args: {}
inputs: [input]
- step: Chunker
name: simple_chunker
step_args:
chunk_size_words: 320
chunk_overlap: 30
inputs: [preprocessor]
- step: SentenceTransformerEmbedder
name: sentence-transformers
step_args:
model_name: BAAI/bge-base-en-v1.5
inputs: [ simple_chunker ]
- step: ChunkWriter
name: save
step_args:
vector_index_name: demoVectorIndex
inputs: [sentence-transformers]
Let's break down the steps.
The KnowledgeBaseFiles step tells the pipeline to watch the "my_kb" knowledge base. When the pipeline is first deployed all files in the knowledge base will be run through the pipeline. Any subsequent files uploaded to this knowledge base will trigger the pipeline to run.
The Chunker defines how the files will be split into chunks.
The SentenceTransformerEmbedder step specifys the embedding model that will be used to embed the chunks.
Finally, the ChunkWriter step writes the chunks to the vector index we created earlier.
Create a Query Pipeline
Having indexed the files we now create a pipeline to query the vector index.
const QueryPipelineCreateArgs: OneContext.PipelineCreateType = OneContext.PipelineCreateSchema.parse({
API_KEY: API_KEY,
pipelineName: QueryPipelineName,
pipelineYaml: "./quickstart/example_yamls/query.yaml",
})
OneContext.createPipeline(QueryPipelineCreateArgs).then((res) => {console.log(res)})
where the file at query.yaml
reads like so:
steps:
- step: SentenceTransformerEmbedder
name: query_embedder
step_args:
model_name: BAAI/bge-base-en-v1.5
include_metadata: [ title, file_name ]
query: "placeholder"
inputs: [ ]
- step: Retriever
name: retriever
step_args:
vector_index_name: demoVectorIndex
top_k: 100
metadata_filters: { }
inputs: ["query_embedder"]
- step: Reranker
name: reranker
step_args:
query: "placeholder"
model_name: BAAI/bge-reranker-base
top_k: 5
metadata_filters: { }
inputs: [ retriever ]
Run the Query Pipeline
We can run the query pipeline and override any of the default step arguments defined in our pipeline at runtime by passing a dictionary of the form:
{step_name : {step_arg: step_arg_value}
.
const query: string = "How much wood could a woodchuck chuck if a woodchuck could chuck wood?"
const QueryPipelineRunArgs: OneContext.RunType = OneContext.RunSchema.parse({
API_KEY: API_KEY,
pipelineName: QueryPipelineName,
overrideArgs: {"retriever" : {"query" : query}}
override_args = {
"query_embedder": {"query": "How much wood could a woodchuck chuck if a wooodchuck could chuck wood?"},
"retriever": {
"top_k": 50,
},
"reranker": {"top_k": 5, "query": query},
}
})
OneContext.runPipeline(QueryPipelineRunArgs).then((res) => {console.log(util.inspect(res, {showHidden: true, colors: true}))})
For much more information on the steps you can add to your pipeline, and what functionality you can get out of pipelines, see the pipelines page.